opposite directions when viewed along $C(5)\cdots C(7)$, so-called 'contra-twist', according to the values observed for the torsion angles in the six-membered ring defined by C(1), C(7), C(3), C(4), C(5) and C(6).

An interesting overall description of the title molecule can be based on the C(1)SC(2)C(3)C(4)C(5)C(6)seven-membered ring. Indeed the basic conformations of cycloheptane are the chair, twist-chair, boat and twist-boat (Hendrickson, 1961), with the twist-chair corresponding to the lowest-energy minimum (Bocian, Pickett, Rounds & Strauss, 1975).

The present seven-membered-ring conformation is similar to a distorted form of the C_s chair of cycloheptane. The twisting movement is hampered by the junction between C(1), C(3) and C(5) connected via the C(7)H-C(8)H₂ group. For this ring the deformation of the chair is a result of this bridging situation with substitution at the three axial positions C(1), C(3) and C(5). The oxygen atoms O(1) and O(2) are eclipsed by C(10) and C(11) when viewed along the S-C(2) bond. Finally, in this description, whereas O(1) and C(10) occupy axial positions, the cyano group, O(2) and C(11) are equatorial.

Conformational calculations have shown that the rotational barrier around the C(1)–S bond is relatively low for compound (I) (25 kJ mol⁻¹). The minimum distance of 2.70 Å, between the reactive site C(2) and C(3) in (III), is at a rotation angle of 80° about this *endo* C–S bond, with regard to the X-ray determination. Cyclization induces rotation about the σ C–S bond and a lessening of C(7)–C(1)–S and C(1)–

S-C(2) angles from 117.5 and 108.5° in (I), respectively, to 104.0 and 96.6° in (III). Other structural differences between (I) and (III) are very slight, except for the lengthening of the C(3)-C(4) bond from 1.33 (1) to 1.570 (5) Å.

Intermolecular distances do not indicate any interactions except van der Waals forces.

The authors thank Dr M. Pierrot for the use of the equipment of the Aix-Marseille III Crystallographic Center and for helpful discussion.

References

- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- BOCIAN, D. F., PICKETT, H. M., ROUNDS, T. C. & STRAUSS, H. L. (1975). J. Am. Chem. Soc. 97, 687–695.
- GRILLER, D. & INGOLD, K. V. (1980). Acc. Chem. Res. 13, 317-323.
- HENDRICKSON, J. B. (1961). J. Am. Chem. Soc. 83, 4537-4547.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- MAIN, P., FISKE, S. J., HILL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- VACHER, B., SAMAT, A., ALLOUCHE, A., LAKNIFLI, A., BALDY, A. & CHANON, M. (1988). *Tetrahedron*, **10**, 2925–2932.
- VACHER, B., SAMAT, A. & CHANON, M. (1985). Tetrahedron Lett. 26, 5129–5130.

Acta Cryst. (1989). C45, 1059-1063

Platelet Activating Factor Antagonist Design. 2. X-ray Structure of Dimethyl 2,3,4,5-Tetrahydro-5 β -(3,4-methylenedioxyphenyl)-2-oxo-3 β -(3,4,5-trimethoxybenzoyl)-3 α ,4 α -furandicarboxylate

By John R. Peterson, *† Hoang D. Do and Robin D. Rogers*

The Michael Faraday Laboratories, Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 28 September 1988; accepted 8 November 1988)

Abstract. $C_{25}H_{24}O_{12}$, $M_r = 516.46$, triclinic, P1, a = 8.780 (3), b = 11.298 (4), c = 13.271 (6) Å, $\alpha = 71.77$ (4), $\beta = 70.31$ (3), $\gamma = 72.66$ (3)°, V = 1189 Å³,

00 © 1989 International Union of Crystallography

^{*} Authors to whom correspondence should be addressed.

[†]Current address: Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA.

imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound.

Introduction. Platelet activating factor (PAF) antagonists provide a channel for elucidating the complete pathobiology of this phospholipid ether and have already yielded firm evidence for several PAFmediated alterations of the pulmonary, intravascular and cardiovascular systems (Venuti, 1985; McManus, 1986; Etienne, Hecquet & Braquet, 1988; Smith, Rubin & Patterson, 1988). To highlight just a few of these alterations, PAF has been associated with bronchoconstriction, anaphylactic shock, increased vascular permeability, systemic hypotension, and bacterial endotoxin synergism. The binding of PAF to specific cellular receptor sites has been determined as the first step in its biological functions (McManus, 1986; Hwang, Lam, Biftu, Beattie & Shen, 1985). More potent and specific PAF receptor antagonists are now needed to probe further the important mediator role portrayed by PAF in human disease states, as well as for potential therapeutic applications. We recently began investigations aimed at the discovery of new PAF antagonists (Peterson, Smillie & Rogers, 1989) where we intend to utilize X-ray crystallography in conjunction with molecular modelling to develop an improved PAFblood platelet receptor-site model (Cohen, 1985; Codding & Muir, 1985; Braquet & Godfroid, 1986; Godfroid & Braquet, 1986; Codding, 1988). X-ray crystallographic studies not only provide detail about the three-dimensional topography of a compound, but they also afford information on the molecular nature of the biological receptor site through an understanding of the interactions of adjacent molecules within the crystal lattice. Herein we describe the X-ray crystal structure and an analysis of the closest intermolecular contacts dimethyl 2.3,4,5-tetrahydro-5 β -(3,4-methylenefor dioxyphenyl)-2-oxo- 3β -(3,4,5-trimethoxybenzoyl)-

 $3\alpha_4\alpha$ -furandicarboxylate, a γ -lactone precursor to the enzyme inhibitory dicinnamodilactone family of lignan natural products (Kumada, Naganawa, Takéuchi, Umezawa, Yamashita & Watanabe, 1978). The dicinnamodilactones are desired as γ -lactone congeners to Merck Sharp & Dohme's potent PAF antagonists L-652,731 and L-659,989 (Wu, Biftu & Doebber, 1986; Hwang *et al.*, 1985; Biftu, Gamble, Doebber, Hwang, Shen, Snyder, Springer & Stevenson, 1986; Ponpipom, Bugianesi, Sahoo, Chabala, Hwang & Doebber, 1988), since the central atoms of the four-carbon tether between the aryl groups now would be geometrically constrained to an eclipsed orientation, and thus would provide a biological probe of this geometric effect.

Experimental. The title compound was obtained in 53% isolated yield by treatment of the potassium enolate of

dimethyl 2.3.4.5-tetrahydro-5-(3.4-methylenedioxyphenyl)-2-oxo-3,4-furandicarboxylate (Peterson, Do & Surjasasmita, 1988) with 3,4,5-trimethoxybenzoyl chloride in tetrahydrofuran (Peterson, Do & Rogers, 1988). The product was purified by crystallization from methanol. Crystals (m.p. 432-433 K) suitable for X-ray analysis were procured by slow evaporation of a methanol solution of the pure product. The spectral and analytical data for this compound were consistent with the X-ray structure.* D_m not determined. Crystal $0.10 \times 0.15 \times 0.25$ mm. Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo Ka. Cell constants from setting angles of 24 reflections (θ > 19.8°). Correction for Lorentz-polarization effect, absorption ignored. $\theta_{max} = 50^{\circ}$; h 0 to 10, k - 13 to 13, l-16 to 16. Standard reflections observed every 3600 s of data collection time: 300, 060, 004. Variation = +2%, 4119 reflections measured, 2495 independent observed reflections $[F_o \ge 5\sigma(F_o)]$. Structure solved utilizing MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) direct-methods program. Least-squares refinement with isotropic thermal parameters led to R = 0.122. The geometrically constrained H atoms were placed in calculated positions 0.95 Å from the bonded C atom and allowed to ride on that atom with B fixed at 5.5 Å^2 . The methyl H atoms were located from a difference Fourier map and included with fixed contributions ($B = 5.5 \text{ Å}^2$). Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); structure refined with SHELX76 (Sheldrick, 1976). Subtracting relation with structure weights = $[\sigma(F_o)^2 + 0.00004F_o^2]^{-1}$, 334 parameters varied. R = 0.046, wR = 0.046, S = 1.15. Δ/σ in final least-squares refinement cycle < 0.01, $\Delta \rho < 0.3 \text{ e} \text{ Å}^{-3}$ in final difference map.

Discussion. Fractional coordinates and B_{eq} values are given in Table 1,[†] bond distances and angles in Table 2, and an *ORTEP* drawing (Johnson, 1976) in Fig. 1. A cell plot is provided in Fig. 2.

As required for our projected conversion of the title compound into a dicinnamodilactone, the *trans* stereochemical disposition of the 4-methoxycarbonyl and

^{*} Physical data: IR (KBr) 3000, 2950, 2840, 1780, 1735, 1675, 1580, 1490, 1450, 1415, 1330, 1280, 1250, 1210, 1165, 1125, 1035, 1000, 910, 730 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 7.34 (s, 2H), 6.95–6.77 (m, 3H), 6.01 (s, 2H), 5.77 (d, J = 10.50 Hz, 1H), 4.63 (d, J = 10.50 Hz, 1H), 3.95 (s, 3H), 3.90 (s, 6H), 3.76 (s, 3H), 3.68 (s, 3H). Analysis: calculated for C₂₅H₂₄O₁₂: C 58.14, H 4.68; found: C 57.93, H 4.89.

[†]Lists of structure factors, anisotropic thermal parameters, least-squares-planes results, torsion angles, and final fractional coordinates for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51588 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final fractional coordinates and equivalent Table 2. Bond distances (Å) and angles (°) for isotropic thermal parameters for $C_{25}H_{24}O_{12}$

C₂₅H₂₄O₁₂

	x	у	Z	$B_{co}^{*}(\dot{A}^{2})$
O(1)	1.2581 (3)	0.5501 (2)	0.0065 (2)	2.82
O(2)	1.1609 (3)	0.3748 (2)	0.0490 (2)	3.71
O(3)	0.8372 (3)	0.5557 (2)	0.2429 (2)	3.52
O(4)	1.2191 (3)	0.3822 (2)	0.3485 (2)	2.86
O(5)	1.3860 (3)	0.3347 (3)	0.1972 (2)	3.71
O(6)	1.3187 (3)	0.6614(3)	0.2469 (2)	3-86
O(7)	1.0540 (3)	0.6578 (2)	0.3357 (2)	2.96
O(8)	1.4033 (3)	1.0660 (2)	-0.0834 (2)	4.19
O(9)	1.2028 (3)	1.1439 (2)	-0·1744 (2)	3.15
O(10)	1.0807 (3)	0.0092 (2)	0.3292 (2)	2.93
O(11)	0.7950 (3)	0.0125 (2)	0-4825 (2)	3.31
O(12)	0.5806 (3)	0.2013 (2)	0.5200 (2)	3.26
C(I)	1.1825 (4)	0-4578 (3)	0.0759 (3)	2-45
C(2)	1.1294 (4)	0-4779 (3)	0.1897 (2)	1.98
C(3)	1.1430 (4)	0.6175 (3)	0.1666 (2)	1.97
C(4)	1.2750 (4)	0.6365 (3)	0.0603 (2)	2.32
C(5)	1.2504 (4)	0.7713 (3)	-0.0067 (2)	2.03
C(6)	1-3509 (4)	0-8482 (3)	-0·0096 (3)	2.62
C(7)	1.3214 (4)	0.9726 (3)	-0.0672 (3)	2.56
C(8)	1.3155 (5)	1-1790 (3)	-0-1395 (3)	3.50
C(9)	1.2023 (4)	1-0184 (3)	-0·1210 (2)	2.19
C(10)	1.1033 (4)	0-9442 (3)	-0.1197 (3)	2.67
C(11)	1.1291 (4)	0-8189 (3)	−0 ·0601 (3)	2-63
C(12)	0-9479 (4)	0-4619 (3)	0.2463 (3)	2.43
C(13)	0.9133 (4)	0-3342 (3)	0-3051 (2)	2.20
C(14)	1.0237 (4)	0.2220 (3)	0.2863 (3)	2.34
C(15)	0.9826 (4)	0-1059 (3)	0.3441 (3)	2.33
C(16)	0-8332 (4)	0.1021 (3)	0-4217 (3)	2.49
C(17)	0-7232 (4)	0.2150 (3)	0-4413 (3)	2.46
C(18)	0.7613 (4)	0-3314 (3)	0.3827 (3)	2.39
C(19)	1.2479 (4)	0-3919 (3)	0.2555 (3)	2.13
C(20)	1.5077 (6)	0.2563 (6)	0.2553 (4)	6-81
C(21)	1-1840 (5)	0.6486 (3)	0.2531 (3)	2.43
C(22)	1.0845 (5)	0.6670 (4)	0-4302 (3)	4.05
C(23)	1.2453 (5)	-0.0113 (4)	0.2624 (3)	3.67
C(24)	0.7319 (5)	-0.0728 (4)	0-4331 (3)	4.11
C(25)	0-4678 (5)	0-3144 (4)	0.5467 (3)	3.80

* $B_{eq} = \frac{4}{3}(a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + ab\cos\gamma\beta_{12} + ac\cos\beta\beta_{13} + bc\cos\alpha\beta_{23}).$

Fig. 1. Thermal-ellipsoid plot of the title compound showing the atom-numbering scheme. H-atom radii are arbitrarily reduced.

5-aryl moieties was preserved during the α -aroylation reaction (Peterson, Do & Rogers, 1988). The C(5)-C(4)-C(3)-C(21) torsion angle of -86.4° and the large vicinal hydrogen coupling constant of 10.50 Hz between C(4)-H and C(3)-H are in accord with this assignment. The ORTEP diagram also reveals that approach of the aroyl chloride [which ultimately becomes the C(2) aroyl group] to the enolate anion occurs preferentially from the sterically least congested face of the γ -lactone ring, affording a *cis*-bis(methoxy-

O(1)-C(1)	1.341 (4)	O(1)-C(4)	1.460 (4)
O(2) - C(1)	1.192 (4)	O(3) - C(12)	1.206 (4)
O(4) - C(19)	1.190 (4)	O(5)-C(19)	1-315 (4)
O(5) - C(20)	1-460 (5)	O(6) - C(21)	1.205 (4)
O(7) - C(21)	1.315 (4)	O(7) - C(22)	1.450 (4)
O(8) - C(7)	1.371 (4)	O(8) - C(8)	1.418 (4)
O(0) - C(8)	1.478 (4)	O(9) - C(9)	1.377 (4)
O(10) = O(15)	1.263 (4)	O(10) - C(23)	1.424 (4)
O(10) = C(15)	1.303(4)	O(10) = C(23)	1.413(4)
O(12) = C(17)	1.262 (4)	O(12) - C(25)	1.470 (4)
C(12) = C(17)	1.503 (4)	C(2) $C(2)$	1.541 (4)
C(1) = C(2)	1.542 (4)	C(2) = C(3)	1.574 (4)
C(2) = C(12)	1.536 (4)	C(2) = C(19)	1.512 (4)
C(3) - C(4)	1.520 (4)	C(3) - C(21)	1.313(4)
C(4) = C(5)	1.508 (4)		1.397 (4)
C(5) = C(11)	1.377 (4)	C(6) - C(7)	1.376 (4)
C(7)-C(9)	1.364 (4)	C(9) - C(10)	1.371 (4)
C(10)-C(11)	1.390 (5)	C(12) - C(13)	1.480 (4)
C(13)–C(14)	1.384 (4)	C(13)C(18)	1.401 (4)
C(14)-C(15)	1.385 (4)	C(15)-C(16)	1-386 (4)
C(16)–C(17)	1.392 (5)	C(17)–C(18)	1-381 (4)
	111.6 (2)	C(10) = O(5) = C(20)	114.7 (3)
C(1) = O(1) = C(4)	115 7 (2)	C(1) = O(3) = C(20)	105.6 (2)
C(21) = O(1) = C(22)	113.7(3)	C(15) - O(0) - C(0)	117 8 (3)
C(8) = O(9) = C(9)	105.0(3)	C(13) = O(10) = C(23)	117.6 (3)
C(16) = O(11) = C(24)	114-5 (3)	C(17) = O(12) = C(23)	11/-/ (3)
O(1) - C(1) - O(2)	122.6 (3)	O(1) - C(1) - C(2)	110-3 (3)
O(2) - C(1) - C(2)	127-1 (3)	C(1) - C(2) - C(3)	101.1 (2)
C(1)-C(2)-C(12)	110-4 (3)	C(3) - C(2) - C(12)	111.4 (3)
C(1)-C(2)-C(19)	112.6 (3)	C(3) - C(2) - C(19)	109-2 (3)
C(12)-C(2)-C(19)	111.7 (3)	C(2) - C(3) - C(4)	104.0 (2)
C(2)-C(3)-C(21)	114-4 (3)	C(4)-C(3)-C(21)	112.6 (3)
O(1)-C(4)-C(3)	103-7 (2)	O(1)-C(4)-C(5)	109.9 (3)
C(3)–C(4)–C(5)	113-5 (3)	C(4) - C(5) - C(6)	117-6 (3)
C(4)–C(5)–C(11)	121.5 (3)	C(6)-C(5)-C(11)	120.9 (3)
C(5)-C(6)-C(7)	116-7 (3)	O(8)C(7)C(6)	128-0 (3)
O(8)-C(7)-C(9)	109-9 (3)	C(6)–C(7)–C(9)	122.0 (3)
O(8)-C(8)-O(9)	108-0 (3)	O(9)-C(9)-C(7)	110.0 (3)
O(9)-C(9)-C(10)	127.9 (3)	C(7)-C(9)-C(10)	122-1 (3)
C(9)-C(10)-C(11)	116.7 (3)	C(5)-C(11)-C(10)	121.6 (3)
O(3)-C(12)-C(2)	118-6 (3)	O(3) - C(12) - C(13)	121-1 (3)
C(2) - C(12) - C(13)	120.3 (3)	C(12)-C(13)-C(14)	122.8 (3)
C(12) - C(13) - C(18)	116-5 (3)	C(14) - C(13) - C(18)	120.7 (3)
C(13) - C(14) - C(15)	119.6 (3)	O(10) - C(15) - C(14)	123.9 (3)
O(10) - C(15) - C(16)	115.9 (3)	C(14)-C(15)-C(16)	120.2 (3)
O(11) - C(16) - C(15)	120.5 (3)	O(11) - C(16) - C(17)	119.4 (3)
C(15)-C(16)-C(17)	$120 \cdot 1$ (3)	O(12) - C(17) - C(16)	115.7 (3)
O(12) - C(17) - C(18)	$124 \cdot 1$ (3)	C(16) - C(17) - C(18)	120-2 (3)
C(13) - C(18) - C(17)	119.2 (3)	O(4) - C(19) - O(5)	124.6 (3)
O(4) - C(19) - C(2)	122.9 (3)	0(5) - C(19) - C(2)	112.4 (3)
O(6) - C(21) - O(7)	125.1 (3)	O(6) - C(21) - C(3)	124.1 (3)
O(7) - C(21) - C(3)	110.7 (3)		
$- \cdot \cdot \cdot \cdot \cdot \cdot = \cdot \cdot \cdot \cdot = \cdot \cdot \cdot = \cdot \cdot \cdot = \cdot \cdot \cdot = $			

Fig. 2. Cell plot of the title compound.

carbonyl) array. Consistent with this finding are C(12) torsion angles of -31.7 and 92.1° , respectively. Similarly, the C(4)-C(3)-C(2)-C(1) torsion angle is $-27 \cdot 4^{\circ}$. The pseudo-gauche relationship that exists about atoms C(2) and C(3) in the title compound differs from the orientation for the analogous ring C atoms in L-652,731 and L-659,989 (Wu *et al.*, 1986; Hwang *et al.*, 1985; Biftu *et al.*, 1986; Ponpipom *et al.*, 1988), in that atoms C(12) and C(4) are now nearly *anti* to one another, Fig. 3.

The lactone ring atoms C(1), O(1), C(2) and C(4)define a plane to within 0.017 Å while C(3) deviates from this plane by 0.473 Å. A separate plane intersects the lactone ring plane at an angle of 1.72° and encompasses atoms C(1), O(1), O(2) and C(2). These atoms are planar to within 0.004 Å and C(4) and C(3) deviate from this plane by -0.066 and 0.422 Å, respectively. The 5-aryl ring atoms C(5) through C(11)and O(8) and O(9) are planar to within 0.099 Å, and this plane intersects the C(1), O(1), C(2), C(4) plane at an angle of 115.79°. The 3-aryl C atoms C(13) through C(18) also describe a plane to within 0.008 A. The latter plane intersects that described by C(2), C(12), C(13) and O(3), which itself is within 0.008 Å of planarity, at an angle of 21.23°. There is some bond-angle compression about C(2), C(3) and C(4)from that usually associated with sp³-hybridized carbon because of the ring geometry in this compound. The angle C(1)-C(2)-C(3) is $101 \cdot 1(2)^{\circ}$, C(2)-C(3)-C(3)C(4) is $104.0(2)^{\circ}$, and O(1)-C(4)-C(3) is $103.7 (2)^{\circ}$. The C(2)–C(3)–C(21), C(3)–C(2)–C(12) and C(3)-C(4)-C(5) bond angles broaden to 114.4(3), 111.4(3) and $113.5(3)^{\circ}$, respectively, as a result of this geometric angle compression. Bond lengths between ring atoms C(2) through C(4) are normal, however. The distance C(2)-C(3)is 1.541 (4) Å and C(3)–C(4) is 1.526 (4) Å.

An analysis of the closest intermolecular contact distances reveals that van der Waals forces are likely to be the dominant stabilizing force in the crystal lattice. Several interactions were noted to occur between neighboring molecules. The non-hydrogen to hydrogen contact distances from O(3) to H(1)C(8) and H(2)C(8) on a molecule related to that in Table 1 by 2-x, 2-y, -z are 2.72 and 2.76 Å, respectively, while

Fig. 3. Pseudo-gauche orientations of (a) the title compound (Ar = 3,4-methylenedioxyphenyl; Ar' = 3,4,5-trimethoxyphenyl) and (b) L-652,731 (Ar = Ar' = 3,4,5-trimethoxyphenyl).

the O(9) to H(1)C(3) separation is 2.48 Å. The corresponding O(9) to O(3) intermolecular distance is 3.168(4) Å. The distance from O(8) to H(1)C(6) on another molecule at 3-x, 2-y, -z is 2.63 Å, whereas the O(8) to O(8) separation is 3.053 (6) Å. At closest contact, O(4) lies 2.38 Å from H(2)C(22) on a molecule at 2-x, 1-y, 1-z, while H(1)C(18) and H(3)C(22) are separated by 2.80 Å. For a molecule at 2-x, 1-y, -z, the distance O(2) to H(1)C(11) is 2.81 Å, O(9) to H(3)C(24) is 2.71 Å, and O(10) to H(1)C(10) is 2.68 Å. Other noticeably shorter nonhydrogen to hydrogen contact distances include O(12)to H(1)C(24) at 2.63 Å for a molecule at 1-x, -y, 1-z, and the O(2) to H(1)C(8) and O(10) to H(1)C(22) separations of 2.66 and 2.64 Å, respectively, on a neighboring molecule at x, y-1, z.

van der Waals interactions of these types may prove to be important for the binding of an antagonist to the PAF-platelet receptor site. Investigations of several other analogues of L-652,731 and L-659,989 are now in progress in our laboratory to ascertain the utility of this approach to the design of more potent and specific antagonists and an improved drug-receptor-site model.

This work was supported in part by the American Cancer Society, Illinois Division, Inc. (JRP, grant No. 87-53), the Elsa U. Pardee Foundation (JRP), the Milheim Foundation (JRP, grant No. 87-32) and by the Donors of the Petroleum Research Fund (JRP and RDR), administered by the American Chemical Society. JRP acknowledges support by the Northern Illinois University Graduate School and the Biomedical Research Support Group. The US National Science Foundation's Chemical Instrumentation Program provided funding to purchase the diffractometer.

References

- BIFTU, T., GAMBLE, N. F., DOEBBER, T., HWANG, S.-B., SHEN, T.-Y., SNYDER, J., SPRINGER, J. P. & STEVENSON, R. (1986). J. Med. Chem. 29, 1917–1921.
- BRAQUET, P. & GODFROID, J. J. (1986). Trends Pharmacol. Sci. 7, 397-403.
- CODDING, P. W. (1988). Symposium on Use of Crystal Structures and Databases in Drug Design. 21st Natl Med. Chem. Symp., Minneapolis, Minnesota, USA.
- CODDING, P. W. & MUIR, A. K. S. (1985). Mol. Pharmacol. 28, 178-184.
- COHEN, N. C. (1985). Advances in Drug Research, edited by B. TESTA, Vol. 14, pp. 41–145. New York: Academic Press.
- ETIENNE, A., HECQUET, F. & BRAQUET, P. (1988). Prog. Clin. Biol. Res. 272, 135-143.
- GODFROID, J. J. & BRAQUET, P. (1986). Trends Pharmacol. Sci. 7, 368-373.
- HWANG, S.-B., LAM, M.-H., BIFTU, T., BEATTIE, T. R. & SHEN, T.-Y. (1985). J. Biol. Chem. 260, 15 639–15 645.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

KUMADA, Y., NAGANAWA, H., TAKÉUCHI, H., UMEZAWA, H., YAMASHITA, K. & WATANABE, K. (1978). J. Antibiot. 31, 105–111.

McManus, L. M. (1986). Pathol. Immunopathol. Res. 5, 104-117.

- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PETERSON, J. R., DO, H. D. & ROGERS, R. D. (1988). Acta Cryst. C44, 1786-1789.
- PETERSON, J. R., DO, H. D. & SURJASASMITA, I. B. (1988). Synth. Commun. 18, 1985–1993.

- PETERSON, J. R., SMILLIE, T. J. & ROGERS, R. D. (1989). Acta Cryst. C45, 297-300.
- PONPIPOM, M. M., BUGIANESI, R. L., SAHOO, S. P., CHABALA, J. C., HWANG, S.-B. & DOEBBER, T. W. (1988). 196th Am. Chem. Soc. Natl Meet., Los Angeles, California, USA. Abstract 132.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination, locally modified. Univ. of Cambridge, England.
- SMITH, L. J., RUBIN, A. E. & PATTERSON, R. (1988). Am. Rev. Respir. Dis. 137, 1015–1019.
- VENUTI, M. C. (1985). Annu. Rep. Med. Chem. pp. 193-202.
- WU, M. S., BIFTU, T. & DOEBBER, T. W. (1986). J. Pharmacol. Exp. Ther. 239, 841–845.

Acta Cryst. (1989). C45, 1063-1065

5-(2,4-Cyclopentadien-1-ylidene)cyclooctanone, a Bichromophoric Molecule

BY JOHN M. CRONAN JR, FRANK R. FRONCZEK AND MARK L. MCLAUGHLIN*

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 23 August 1988; accepted 4 January 1989)

Abstract. $C_{13}H_{16}O, M_r = 188.3,$ orthorhombic, *P*2₁2₁2₁, a = 5.7499 (12), b = 12.552 (2), c =15.021 (3) Å, $V = 1084 \cdot 1$ (6) Å³, Z = 4, $D_{\rm r} =$ $1 \cdot 153 \text{ Mg m}^{-3}$, $\lambda(Mo K\alpha) = 0.71073 \text{ Å},$ $\mu =$ 0.066 mm^{-1} , F(000) = 408, T = 295 K, R = 0.032 for1040 data having $F_{0}^{2} > 1\sigma(F_{0}^{2})$. The title molecule adopts a boat-chair conformation also found for 1.5cyclooctadione [Miller & McPhail (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1527–1531]. There are considerable bond-angle distortions observed for all the methylenes forming the eight-membered ring. These six bond angles range from 111.9 (2)-115.8 (2)°. The bond angle exocyclic to the cyclopentadienylidene ring is $116.6(2)^{\circ}$. The non-bonding distance between the O and the electrophilic fulvene C is 3.636(2) Å. The cyclopentadienylidene ring is planar, with maximum deviation of 0.002 (2) Å.

Introduction. The title molecule (Fig. 1) is being studied as part of an investigation of bichromophoric molecules. The two π -electronic systems of the title molecule are 'isolated' from each other by two trimethylene chains. Bichromophoric effects among flexible molecules are frequently most intense when the two chromophores are separated by this chain length (De Schryver, Boens & Put, 1977). This X-ray structure determination was undertaken to determine if any significant ground state–ground state interactions are detectable in this molecule.

Experimental. The title compound was prepared by condensation of 1,5-cyclooctadione with one equiv-

alent of freshly distilled 1,3-cyclopentadiene, catalyzed with pyrrolidine in methanol at room temperature (Stone & Little, 1985). Clear, yellow crystals, m.p. 358 K, were grown by sublimation at room temperature and 0.01 mm Hg. All standard spectroscopic measurements can be interpreted from the X-ray structure.

Intensity data were obtained from an irregular fragment of dimensions $0.18 \times 0.35 \times 0.40$ mm mounted in a random orientation on an Enraf-Nonius CAD-4 diffractometer. Cell dimensions were determined at 295 K by a least-squares fit to setting angles of 25 reflections having $10 < \theta < 12^{\circ}$. Two octants of data having $2 < 2\theta < 55^{\circ}$, $0 \le h \le 7$, $0 \le k \le 16$, $-19 \le l \le 19$, were measured using graphite-monochromated Mo Ka radiation. ω -2 θ scans were made at speeds ranging from 0.45 to 4.0° min⁻¹ to measure all significant data with approximately equal precision. Three standard reflections (200, 020, 004) declined in intensity by 2.7% during data collection, and a linear correction was applied. Data reduction also included corrections for background, Lorentz and polarization effects. Absorption was negligible. The two equivalent octants of data were averaged ($R_{int} = 0.023$) to yield 1465 unique data of which 1040 had $F_{\rho}^{2} > 1\sigma(F_{\rho}^{2})$ and were used in the refinement.

Fig. 1. 5-(2,4-Cyclopentadien-1-ylidene)cyclooctane.

© 1989 International Union of Crystallography

^{*} To whom correspondence should be addressed.